Question 18

If vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ are orthogonal, what is the component of $\overrightarrow{\mathbf{B}}$ along the direction of $\overrightarrow{\mathbf{A}}$? What is the component of $\overrightarrow{\mathbf{A}}$ along the direction of $\overrightarrow{\mathbf{B}}$?

Solution

Suppose that $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ are orthogonal. Then their dot product is zero.

$$\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}} = 0$$

The component of $\overrightarrow{\mathbf{B}}$ along the direction of $\overrightarrow{\mathbf{A}}$ is the dot product of $\overrightarrow{\mathbf{B}}$ with a unit vector in the direction of $\overrightarrow{\mathbf{A}}$:

$$\vec{\mathbf{B}} \cdot \frac{\vec{\mathbf{A}}}{\left|\vec{\mathbf{A}}\right|} = \frac{\vec{\mathbf{B}} \cdot \vec{\mathbf{A}}}{\left|\vec{\mathbf{A}}\right|}$$
$$= \frac{\vec{\mathbf{A}} \cdot \vec{\mathbf{B}}}{\left|\vec{\mathbf{A}}\right|}$$
$$= \frac{0}{\left|\vec{\mathbf{A}}\right|}$$
$$= 0$$

The component of $\overrightarrow{\mathbf{A}}$ along the direction of $\overrightarrow{\mathbf{B}}$ is the dot product of $\overrightarrow{\mathbf{A}}$ with a unit vector in the direction of $\overrightarrow{\mathbf{B}}$:

$$\vec{\mathbf{A}} \cdot \frac{\vec{\mathbf{B}}}{\left|\vec{\mathbf{B}}\right|} = \frac{\vec{\mathbf{A}} \cdot \vec{\mathbf{B}}}{\left|\vec{\mathbf{B}}\right|}$$
$$= \frac{0}{\left|\vec{\mathbf{B}}\right|}$$
$$= 0.$$