Question 18

If vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ are orthogonal, what is the component of $\overrightarrow{\mathbf{B}}$ along the direction of $\overrightarrow{\mathbf{A}}$? What is the component of $\overrightarrow{\mathbf{A}}$ along the direction of $\overrightarrow{\mathbf{B}}$?

Solution

Suppose that $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ are orthogonal. Then their dot product is zero.

$$
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=0
$$

The component of $\overrightarrow{\mathbf{B}}$ along the direction of $\overrightarrow{\mathbf{A}}$ is the dot product of $\overrightarrow{\mathbf{B}}$ with a unit vector in the direction of $\overrightarrow{\mathbf{A}}$:

$$
\begin{aligned}
\overrightarrow{\mathbf{B}} \cdot \frac{\overrightarrow{\mathbf{A}}}{|\overrightarrow{\mathbf{A}}|} & =\frac{\overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{A}}}{|\overrightarrow{\mathbf{A}}|} \\
& =\frac{\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}}{|\overrightarrow{\mathbf{A}}|} \\
& =\frac{0}{|\overrightarrow{\mathbf{A}}|} \\
& =0 .
\end{aligned}
$$

The component of $\overrightarrow{\mathbf{A}}$ along the direction of $\overrightarrow{\mathbf{B}}$ is the dot product of $\overrightarrow{\mathbf{A}}$ with a unit vector in the direction of $\overrightarrow{\mathbf{B}}$:

$$
\begin{aligned}
\overrightarrow{\mathbf{A}} \cdot \frac{\overrightarrow{\mathbf{B}}}{|\overrightarrow{\mathbf{B}}|} & =\frac{\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}}{|\overrightarrow{\mathbf{B}}|} \\
& =\frac{0}{|\overrightarrow{\mathbf{B}}|} \\
& =0 .
\end{aligned}
$$

